Kernel Refinement for Monte Carlo Denoising

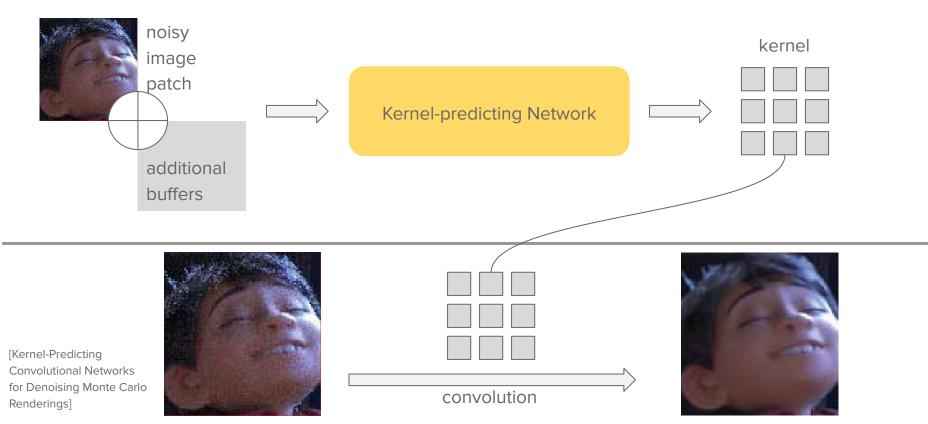
Mid-term Proposal Presentation Team 4: Olivia Gerdis Odenthal, Kyubeom Han

Monte Carlo Noise

32000 samples per pixel 1083.58 secs

8 samples per pixel 2.54831 secs

Kernel-based Denoising

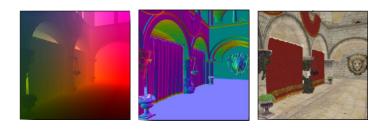


Different Denoising Strategies

Only Geometry-Buffers (G-Buffers)

Info about the first hit

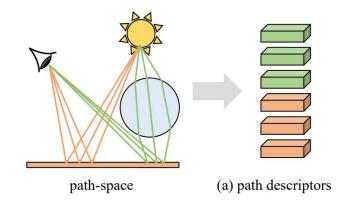
- depth / position
- normal
- albedo



[https://jo.dreggn.org/home/2010_atrous.pdf]

Additional Path features ("P-buffers")

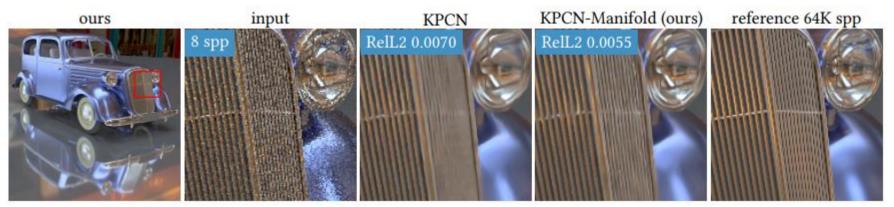
Info about the whole ray path



[Weakly-Supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction]

Only Geometric Feature

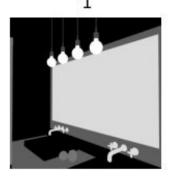
- faster
- requires less memory
- Limitations: complex lighting conditions

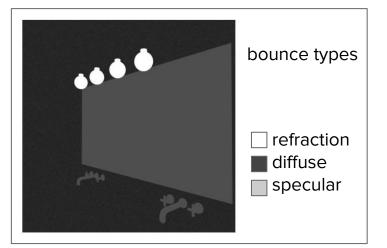


[Weakly-Supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction]

Path descriptors

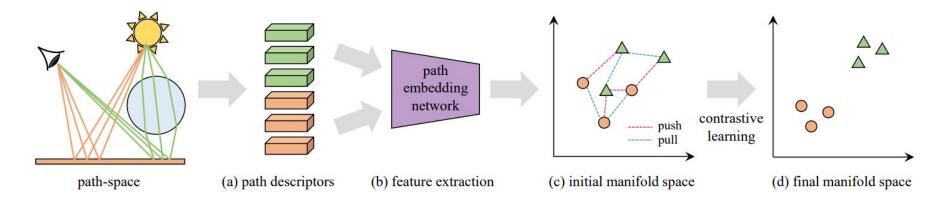
smoothness of bounce ()





Embedding the path features

Weakly-Supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction

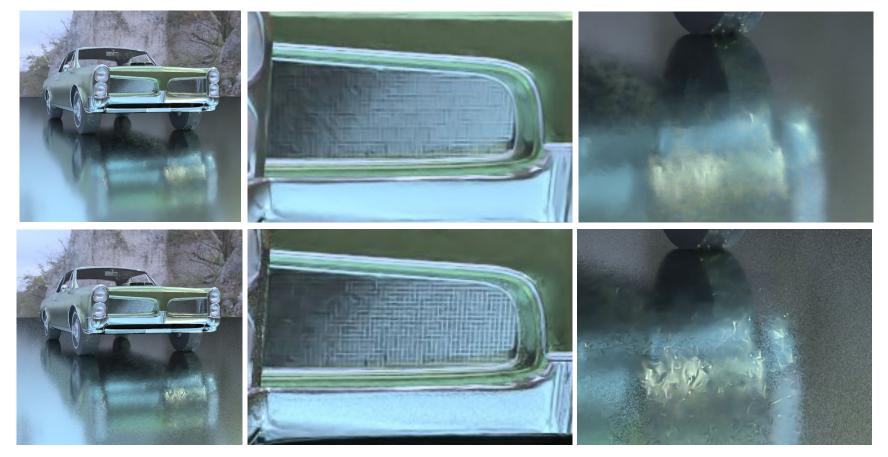


Problem with current P-buffer methods

no P-Buffer

with P-buffer

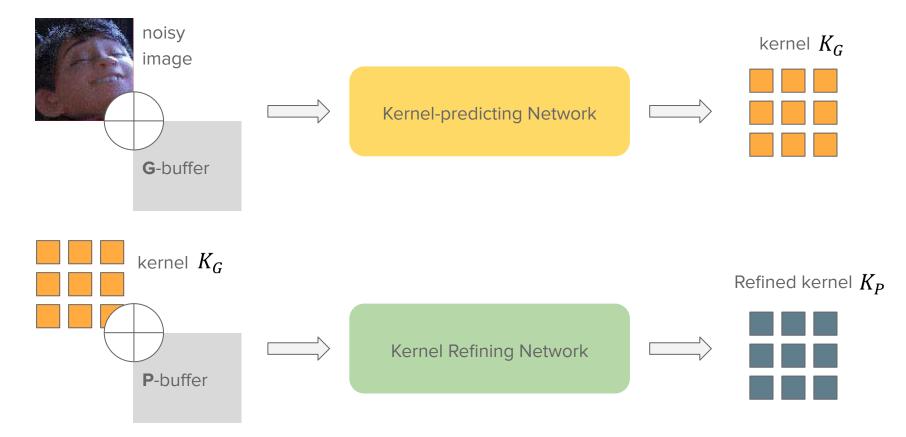
KPCN-manifold



more details

more artifacts

Our Plan - Kernel Refinement



Our Plan - Kernel Refinement

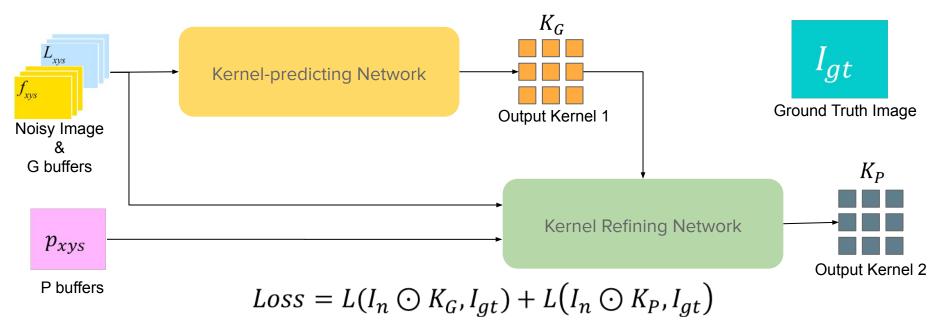
Instead of directly estimating the kernel using p-buffers, we let the p-buffer refine the kernel estimated with only g-buffers

Aim to balance the effects of g-buffers & p-buffers for kernel prediction

Kernel Refinement Strategy #0

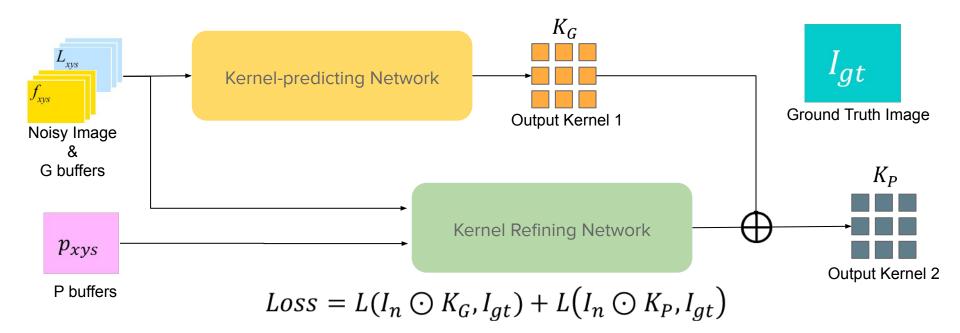
Directly feeding the kernel into the neural network might lead to worse training

Curse of dimensionality! (Kernel: HxWx21x21, input features: HxWx34)



Kernel Refinement Strategy #1

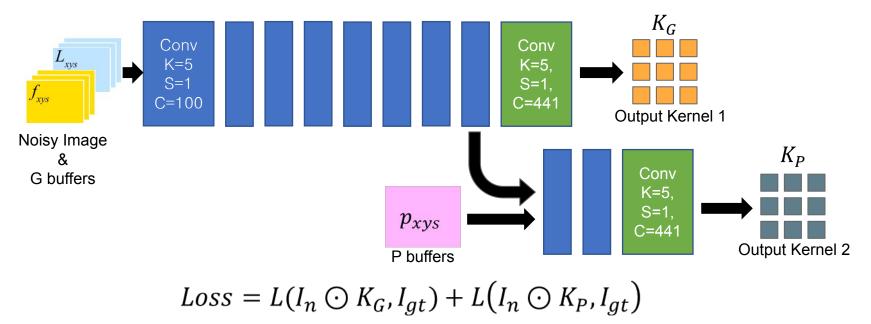
Add skip connection in order to reduce overhead!



Kernel Refinement Strategy #2

Work on hidden embedding of kernel predicting networks

Detailed architecture might vary depending on type of denoisers

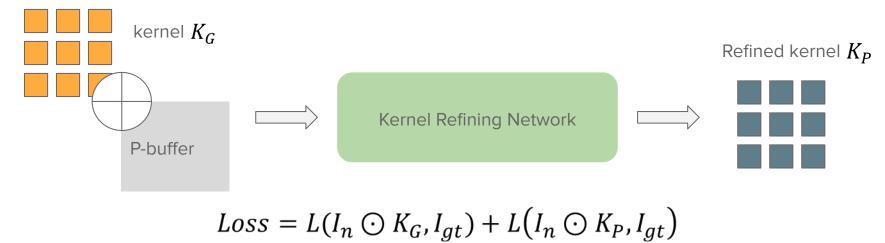


Training with Both Kernels

Refinement works on previously predicting kernel

For effective kernel construction, we want both kernels to show good performance

We train with denoised images with both kernels to jointly train kernel-predicting network and kernel-refining network



Current Status - Reproduction

Reproduced with code from WCMC

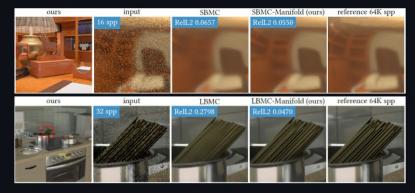
- Contains path manifold module for p-buffers
- Supports three denoisers
 - KPCN(Bako et al. 2017)
 - SBMC(Gharbi et al. 2019) to be presented...
 - NDLE(Bako et al. 2020)

WCMC: Weakly-Supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction

Project Page | Paper

Official PyTorch implementation of WCMC.

Weakly-Supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction In-young Cho, Yuchi Huo*, Sung-eui Yoon,* KAIST, Repulic of Korea *denotes co-corresponding authors in SIGGRAPH 2021



Scene credits

- "Library-Home Office" by ThePefDispenser under CC BY 3.0.
- "My Kitchen" by tokabilitor under CC0.

Current Status - Dataset

Using OptiX path tracer for dataset generation

To utilize limited scenes(18), we apply various augmentations

- Random camera parameters & positions
- Random material properties
- Random flip & rotation

450 images for training (1280x1280)

- Noisy: 8spp, GT: 8000spp

Training dataset for KPCN takes about 1.2TB Dataset for SBMC, LBMC will be rendered later

Current Status - KPCN & KPCN-Manifold

Input

relMSE

KPCN

0.270142

KPCN-Manifold

GT

relMSE

Further Plans

Reproduce the original work

Create dataset for training

Train the original work with dataset

Test our kernel refinement methods on KPCN & KPCN-Manifold

If successful, we apply our idea to other denoisers SBMC and LBMC

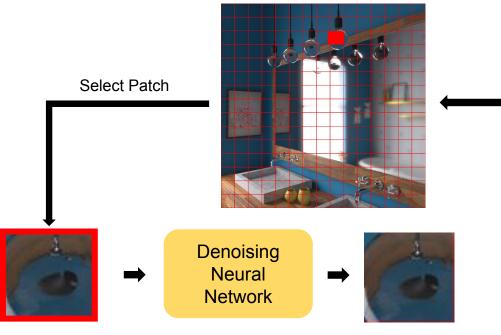
Olivia Gerdis Odenthal

- Survey MC Denoising papers
- Design & Implement Neural Network
- Train our method & Discussion

Kyubeom Han

- Reproduce previous works
- Generating Dataset
- Design Neural Network
- Discussion

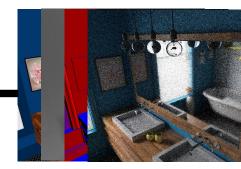
Overall Flow of DL-based MC Denoising



Denoised Patch

Generate patches (e.g 128x128)

Loss(



Rendered Image & Auxiliary Features

,

Denoised Patch

GT Patch

Patch of Rendered Image & Auxiliary Features